Automated Phenotype Recognition for Zebrafish Embryo Based In Vivo High Throughput Toxicity Screening of Engineered Nano-Materials

نویسندگان

  • Rong Liu
  • Sijie Lin
  • Robert Rallo
  • Yan Zhao
  • Robert Damoiseaux
  • Tian Xia
  • Shuo Lin
  • Andre Nel
  • Yoram Cohen
چکیده

A phenotype recognition model was developed for high throughput screening (HTS) of engineered Nano-Materials (eNMs) toxicity using zebrafish embryo developmental response classified, from automatically captured images and without manual manipulation of zebrafish positioning, by three basic phenotypes (i.e., hatched, unhatched, and dead). The recognition model was built with a set of vectorial descriptors providing image color and texture information. The best performing model was attained with three image descriptors (color histogram, representative color, and color layout) identified as most suitable from an initial pool of six descriptors. This model had an average recognition accuracy of 97.40±0.95% in a 10-fold cross-validation and 93.75% in a stress test of low quality zebrafish images. The present work has shown that a phenotyping model can be developed with accurate recognition ability suitable for zebrafish-based HTS assays. Although the present methodology was successfully demonstrated for only three basic zebrafish embryonic phenotypes, it can be readily adapted to incorporate more subtle phenotypes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Content Screening of Zebrafish Greatly Speeds up Nanoparticle Hazard Assessment

With the mass production of engineered nanoparticles, risk assessment efforts are in need of platforms that offer predictive value to human health and environment, and also possess high throughput screening capacity. Scientists, when turning to a model-organism to help answer genetic questions that cannot be easily addressed in humans, often chose the zebrafish (Danio rerio). Zebrafish share th...

متن کامل

Development and Validation of an Automated High-Throughput System for Zebrafish In Vivo Screenings

The zebrafish is a vertebrate model compatible with the paradigms of drug discovery. The small size and transparency of zebrafish embryos make them amenable for the automation necessary in high-throughput screenings. We have developed an automated high-throughput platform for in vivo chemical screenings on zebrafish embryos that includes automated methods for embryo dispensation, compound deliv...

متن کامل

Automated Reporter Quantification In Vivo: High-Throughput Screening Method for Reporter-Based Assays in Zebrafish

Reporter-based assays underlie many high-throughput screening (HTS) platforms, but most are limited to in vitro applications. Here, we report a simple whole-organism HTS method for quantifying changes in reporter intensity in individual zebrafish over time termed, Automated Reporter Quantification in vivo (ARQiv). ARQiv differs from current "high-content" (e.g., confocal imaging-based) whole-or...

متن کامل

HDAT: web-based high-throughput screening data analysis tools

The increasing utilization of high-throughput screening (HTS) in toxicity studies of engineered nano-materials (ENMs) requires tools for rapid and reliable processing and analyses of large HTS datasets. In order to meet this need, a web-based platform for HTS data analyses tools (HDAT) was developed that provides statistical methods suitable for ENM toxicity data. As a publicly available comput...

متن کامل

Zebrafish as a model for developmental toxicity assessment

The zebrafish embryo has emerged as promising alternative model for traditional in vivo developmental toxicological screening due to their advantageous characteristics as their small size and transparency. In this paper, we reviewed the applicability of the zebrafish embryo model in some relevant areas to human toxicology as developmental toxicity, cardiovascular toxicity and neurotoxicity (beh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012